

# DISCOVERY OF IRL 3461: A NOVEL AND POTENT ENDOTHELIN ANTAGONIST WITH BALANCED ET A/ET B AFFINITY

Junichi Sakaki,\* Toshiki Murata, Yoko Yuumoto, Ikushi Nakamura, Thomas Frueh, Thomas Pitterna, Genji Iwasaki, Kyoko Oda, Takaki Yamamura, and Kenji Hayakawa

Takarazuka Research Institute, Novartis Pharma K.K., 10-66 Miyuki-cho, Takarazuka 665, Japan

Received 20 March 1998; accepted 16 July 1998

Abstract: IRL 3461, N-butanesulfonyl-[N-(3,5-dimethylbenzoyl)-N-methyl-3-[4-(5-isoxazolyl)-phenyl]-alanyl]-(L)-valineamide, a potent and bifunctional (ET<sub>A</sub>+ET<sub>B</sub>) [Ki(ET<sub>A</sub>)=1.8 nM, Ki(ET<sub>B</sub>)=1.2 nM] antagonist was discovered by structural modification of IRL 2500, an ET<sub>B</sub> selective antagonist. IRL 3461 was found to be stable on incubation with human, rat, mouse, and guinea pig plasmas. © 1998 Elsevier Science Ltd. All rights reserved.

Since the discovery of endothelins in 1988<sup>1</sup>, various types of potent and selective  $ET_A$  receptor antagonists have been identified<sup>2</sup>. Recently, it was demonstrated that not only  $ET_A$  but also  $ET_B$  receptors are involved in vasoconstriction<sup>3</sup>. Thus current research efforts have been directed toward development of potent orally active antagonists with a balanced profile of  $ET_A$  and  $ET_B$  activity.

We have already reported<sup>4</sup> a rational approach for the discovery of IRL 2500, a novel ET<sub>B</sub> selective antagonist [Ki(ET<sub>A</sub>)=440 nM, Ki(ET<sub>B</sub>)=1.0 nM]<sup>5</sup>, by combination of sequence studies of an ET-1 analog and a homology study of the rhodopsin superfamily of seven transmembrane receptors. In this report we describe the development of IRL 3461, a potent and dual ET<sub>A</sub>/ET<sub>B</sub> antagonist based on the structural modification of IRL 2500 by increasing the ET<sub>A</sub> receptor affinity [i) replacement of the biphenyl part with the 5-isoxazolyl phenyl group, ii) introduction of the sulfonamide moiety at the C-terminus] and by improving plasma stability [iii) replacement of tryptophan with valine].

# Scheme 1

## Chemistry

Synthesis of the left-hand fragment 5 is shown in Scheme 2. 4-(5-Isoxazolyl)benzyl bromide (3)<sup>6</sup> prepared from 4'-methylacetophenone (1) was converted to 4-(5-isoxazolyl)phenylalanine ethyl ester (4) by the

reaction with diphenylmethyleneglycine according to the reported procedure<sup>7</sup>. The biarylalanine (4) was then subjected to 3,5-dimethylbenzolylation, N-methylation, and hydrolysis to afford 5, which was used for the following coupling reactions.

(a) i.  $Me_2NCH(OMe)_2$ , reflux; ii.  $H_2NOSO_3H$ , MeOH, rt, 75% (2 steps); (b) NBS, dibenzoylperoxide,  $CCl_4$ , reflux, 93%; (c) i.  $Ph_2C=NCH_2CO_2Et$ ,  $Bu_4NHSO_4$ , 2.5N NaOH,  $CH_2Cl_2$ , rt; ii. p-TsOH,  $H_2O$ , MeCN, rt, 57% (2 steps); (d) i. 3,5-dimethylbenzoic acid, HOBt, WSCD, DMF, rt; ii, NaH, Mel, DMF, rt; iii, LiOH,  $H_2O$ , MeOH, THF, rt, 67% (3 steps)

(e) NH<sub>3</sub>, MeCN, 95%; (f) TMS-CI, Et<sub>3</sub>N, toluene, 87%; (g) i, cyanuric fluoride, pyridine; ii, **8**, DMAP, CH<sub>2</sub>Cl<sub>2</sub>, 72% (2 steps); (h) **8**, BOP, Et<sub>3</sub>N, DMAP, CH<sub>2</sub>Cl<sub>2</sub>, 59%; (i) 4N-HCl, dioxane, 95%

The optically pure butanesulfonylvalineamide (11) was synthesized as shown in Scheme 3. The TMS-activated sulfonamide (8) 8 was successfully coupled with Boc-valine in two different ways without racemization [method 1: coupling via the acid fluoride of Boc-valine, method 2: direct coupling with Boc-valine in the presence of BOP (benzotriazol-1-yl-oxy-tris(dimethylamino)phosphonium hexafluorophosphate)]. The resulting butanesufonyl Boc-valineamide (10) was deprotected to the HCl salt (11)<sup>9</sup>.

Coupling reaction of racemic 5 with L-tryptophan methyl ester gave a 7:3 mixture of two diastereoisomers which could be separated by MPLC<sup>10</sup>. Saponification of the less polar isomer afforded the more potent isomer 18 (Scheme 4). Coupling reaction of 5 with the chiral 11 by using WSCD [1-(3-dimethylaminopropyl)-3-ethylcarbodiimide] and HOBt in DMF gave a mixture of two diastereoisomers (34) in 7:3 ratio<sup>11</sup>. The major isomer was found to be a more potent isomer. A series of sulfonamide analogs (20-37) was synthesized by the similar procedure (Tables 2 and 3). In most cases, the asymmetric center of the phenylalanine moiety was isomerized, resulting in the unbalanced formation of two diastereoisomers in ca. 6:4 – 7:3 even though the racemic phenylalanine derivatives were used. The details are discussed in the following paper<sup>12</sup>.

#### Scheme 4

(j) i, L-Trp-OMe, HOBt, WSCD, DMF. rt, 90%; ii, MPLC separation of diastereoisomers, iii, LiOH, H<sub>2</sub>O, MeOH, THF, rt, 91%; (k) 11, WSCD, HOBt, DMF, 90%

# Structure Activity Relationship

Table 1: SAR for the 4-Substituted Phenylalanyltryptophan Derivatives

| R | `Д ⊂о₂н |
|---|---------|

| No              | R            | Ki(ET <sub>A</sub> )<br>(nM) | Ki(ET <sub>B</sub> )<br>(nM) | Ratio<br>A/B |
|-----------------|--------------|------------------------------|------------------------------|--------------|
| 12              | н            | 11000                        | 36                           | 306          |
| 13ª             | phenyl       | 440                          | 1                            | 440          |
| 14 <sup>b</sup> | 2-pyridyl    | 2300                         | 4.4                          | 523          |
| 15              | 2-furyl      | 250                          | 0.76                         | 329          |
| 16              | 2-thienyl    | 87                           | 0.6                          | 145          |
| 17              | 3-thienyl    | 54                           | 0.23                         | 235          |
| 18              | 3-isoxazolyl | 130                          | 0.79                         | 165          |
| 19              | 5-isoxazolyl | 45                           | 0.21                         | 214          |

a) IRL 2500 b) racemic phenylalanine analog

In the case of tryptophan derivatives (Table 1), an aromatic substituent at the 4-position of the phenylalanine moiety shows a significant effect in changing the binding affinity for the endothelin receptors. Among several derivatives, replacement of this position with 3-thienyl or 5-isoxazolyl group most remarkably contributed to the increase in binding affinity for both ET<sub>A</sub> and ET<sub>B</sub> receptors (Table 1: 17 and 19).

A great breakthrough was achieved in the course of a systematic SAR study for replacement of carboxylic acid. It was found that the  $ET_A$  receptor binding was dramatically improved (10-50 times) by attaching a sulfonamide group to the C-terminus of tryptophan with retaining the  $ET_B$  receptor binding, resulting in the more balanced binding affinity (A/B ratio 4-26) (Table 2: 20-29).

Table 2: SAR for the 4-Isoxazolylphenylalanyltryptophan Derivatives

| No | R           | Ki(ET <sub>A</sub> )<br>(nM) | Ki(ET <sub>B</sub> )<br>(nM) | Ratio<br>A/B |
|----|-------------|------------------------------|------------------------------|--------------|
| 20 | ethyl       | 5.3                          | 0.38                         | 13.9         |
| 21 | vinyl       | 1.9                          | 0.14                         | 13.6         |
| 22 | propyl      | 2.2                          | 0.24                         | 9.2          |
| 23 | 1-propenyl  | 3.9                          | 0.39                         | 10           |
| 24 | 2-propenyl  | 0.89                         | 0.23                         | 3.9          |
| 25 | i-propyl    | 10                           | 0.38                         | 26.3         |
| 26 | butyl       | 2.9                          | 0.24                         | 12.1         |
| 27 | ethoxyethyl | 6.0                          | 0.23                         | 26.1         |
| 28 | phenyl      | 2.3                          | 0.34                         | 6.8          |
| 29 | benzyl      | 5.4                          | 0.50                         | 10.8         |
|    |             |                              |                              |              |

Then we investigated replacement of the tryptophan moiety with various amino acids (Table 3). It is of great interest to find that the butylsulfonamides of  $\beta$ -branched- $\alpha$ -amino acids (34-37) have binding affinities well balanced between ET<sub>A</sub> and ET<sub>B</sub> receptors. These compounds are also completely resistant to rat and mouse plasmas<sup>13</sup>. IRL 3461 (34) shows the highest binding affinity with good stability against plasma of different

species.

In summary, we have discovered a highly potent and well-balanced ET<sub>A</sub>/ET<sub>B</sub> receptor antagonist, IRL 3461, which is resistant to degradation by plasma of rat, mouse, guinea pig as well as human.

Table 3: SAR for the 4-Isoxazolylphenylalanine sulfonamide Derivatives

| No              | AA <sup>a</sup>        | Ki(ET <sub>A</sub> )<br>(nM) | Ki(ET <sub>B</sub> )<br>(nM) | Ratio<br>A/B |
|-----------------|------------------------|------------------------------|------------------------------|--------------|
| 30              | 2-naphthyl-<br>alanine | 3.1                          | 0.59                         | 5.3          |
| 31              | ethylglycine           | 5.5                          | 0.7                          | 7.9          |
| 32              | methionine             | 5.2                          | 0.49                         | 10.6         |
| 33              | leucine                | 8.0                          | 1.3                          | 6.2          |
| 34 <sup>b</sup> | valine                 | 1.8                          | 1.2                          | 1.25         |
| 35              | isoleucine             | 6.9                          | 3.5                          | 2.0          |
| 36              | cyclohexyl<br>glycine  | 8.6                          | 3.1                          | 2.8          |
| 37              | threonine              | 9.1                          | 3.2                          | 2.8          |

a) (L)-isomer b) IRL 3461

## **References and Notes**

- 1. Yanagisawa, M.; Kurihara, H.; Kimura, H.; Tomobe, Y.; Kobayashi, M.; Mitsui, Y.; Goto, K.; Masaki, T. Nature 1988, 332, 411.
- 2. Recent reviews: a) Cheng, X. M.; Nikam, S. S.; Doherty, A. M. Cur. Med. Chem. 1995, 1, 271. b) Doherty, A. M. Drug Discovery Today, 1996, 1, 60.
- 3. a) Clozel, M.; Gray, G. A.; Breu, V.; Loeffler, B.-M.; Osterwalder, R. Biochem. Biophys. Res. Comm. 1992, 2, 867. b) Dagassan, P. H.; Breu, V.; Clozel, M.; Kuenzli, A.; Vogt, P.; Turina, M.; Kiowski, W.; Clozel, J.-P. J. Cardiovasc. Pharmacol. 1996, 27, 147. c) Seo, B.; Luescher, T. Hypertension 1995, 25, 501.

- 4. Frueh, Th.; Saika, H.; Svensson, L.; Pitterna, Th.; Sakaki, J.; Okada, T.; Urade, Y.; Oda, K.; Fujitani, Y.; Takimoto, M.; Yamamura, T.; Inui, T.; Makatani, M.; Takai, M.; Umemura, I.; Teno, N.; Toh, H.; Hayakawa, K.; Murata, T. Bioorg. Med. Chem. Lett 1996, 6, 2323.
- 5. The binding affinity for the two subtypes of ET receptors, ET<sub>A</sub> and ET<sub>B</sub> were examined in porcine lung membranes. For a detailed description of the binding assay, see: Takai, M.; Umemura, I.; Yamasaki, K.; Watanabe, T.; Fujitani, Y.; Oda, K.; Urade, Y.; Inui, T.; Yamamura, T.; Okada, T. Biochem. Biophys. Res. Commun., 1992, 184, 953.
- 6. Preparation of 4-(5-isoxazolyl)toluene: Lin, Y.i, Lang, S. A., Jr. J. Org. Chem. 1980, 45, 4857.
- 7. O'Donnell, M.; Bennett, W. D.; Wu, S. J. Am. Chem. Soc. 1989, 111, 2353.
- 8. Trimethylsilylation of sulfonamide: Roy, A. K. J. Am. Chem. Soc. 1993, 115, 2598.
- 9. Synthetic procudures for 10. Method 1) A solution of 8 (1.72 g, 8.28 mmol), Boc-valine fluoride<sup>14</sup> (1.01 g, 4.6 mmol), and DMAP (220 mg, 1.84 mmol) in THF (25 ml) was stirred at room temperature for 1h. The mixture was diluted with 10% citric acid and extracted with ethyl acetate. The organic layer was washed with water and brine, dried over MgSO<sub>4</sub>, and concentrated in vacuo. The residue was purified by flash column chromatography (hexane: ethyl acetate=3:1) to give 10 (1.11 g, 72%). Method 2) Et<sub>3</sub>N (6.75 ml, 48.4 mmol) was added dropwise to a mixture of Boc-valine (10.18 g, 44.0 mmol), BOP (23.05 g, 52.1 mmol), and CH<sub>2</sub>Cl<sub>2</sub> (180 ml) at room temperature. After being stirred for 15min, to the mixture were added 8 (9.96 g, 47.6 mmol) and DMAP (1.62g, 13.3 mmol) at room temperature. The reaction mixture was stirred overnight and concentrated in vacuo. The residue was diluted with 10% citric acid and extracted with ethyl acetate. The organic layer was washed with brine, dried over MgSO<sub>4</sub>, and concentrated in vacuo. The crude material was purified by flash column chromatography with ethyl acetate/hexane (3:1) to give 10 (8.73 g, 59%).
- 10. Kusano (KHLC-201-43 type III, CPS-223L-1), hexane: ethyl acetate=1:1.
- 11. Two isomers were separated into pure isomers by HPLC [Shim-pack PREP-SIL(H), hexane: isopropanol: TFA=90: 10: 0.5 (1.0 ml/min); the major isomer: 38.6 min, the minor one: 43.8 min (1.0 ml/min).
- 12. Sakaki, J.; Murata, T.; Yuumoto, Y.; Nakamura, I.; Hayakawa, K. Bioorg. Med. Chem. Lett accepted.
- 13. Plasma stability test: A compound (100 μM) was incubated with plasma (80 μl) at 37 °C for two hours. After acidification with HCl, the compound was extracted with ethyl acetate and analyzed by HPLC (TOSO ODS120T, 0.1%TFA/H<sub>2</sub>O 0.1%TFA/CH<sub>3</sub>CN).
- a) Carpino, L.; Sadat-Aalaee.; Chao, H. G.; DeSelms, R. H. J. Am. Chem. Soc. 1990, 112, 9651. b) Bertho,
  J.-N.; Loffet, A.; Pinel, C.; Reuther, F.; Sennyey, G. Tetrahedron Lett. 1991, 32, 1303.